Corn Grain Drying Using Corn Stover Combustion and CHP Systems

Thumbnail Image
Date
2007-01-01
Authors
Bennett, Albert
Bern, Carl
Richard, Thomas
Anex, Robert
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Bern, Carl
University Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Post-harvest drying of shelled corn grain requires large amounts of fossil fuel energy. In 2004, it was estimated that the upper Midwest consumed more than $1.4 billion of fossil fuels to dry $19.7 billion of corn grain. Over the long term, drying corn with fossil fuels may become cost prohibitive due to limited fuel reserves. To address future energy concerns for grain dryers, this study evaluated the potential use of combined heat and power (CHP) systems that use the combustion of corn stover both to produce heat for drying and to generate electricity for fans, augers, and control components. Net present value (NPV) cost estimates were determined for two continuous-flow dryers: a relatively small on-farm dryer (8.9 Mg h-1), and a larger dryer more common to grain elevators (73 Mg h-1). For each dryer, three levels of assumed stover price were used: $15, $25, and $35 per dry Mg for the small dryer, and $30, $45, and $60 per dry Mg for the larger dryer (includes payments to farmer and off-farm transport costs). Compared to equivalently sized fossil fuel-fired dryers, both the small and large CHP dryers were found to be more economical over the long term. Twenty-year NPV cost savings and breakeven points were estimated to be $63,523 and 14.3 years for the small CHP dryer ($25 Mg-1 stover) and $1,804,482 and 7.5 years for the large dryer ($45 Mg-1 stover). Sharing CHP infrastructure with other processes requiring heat that extend seasonal use can reduce payback periods significantly and provide broader efficiency benefits. Sensitivity analysis found cost savings to be most sensitive to fluctuations in fossil fuel costs, followed by annual use of dryer equipment.

Comments

This article is from Transactions of the ASABE 50 (2007): 2161–2170, doi:10.13031/2013.24076. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2007
Collections