Comparative evaluation of three egg production systems: Housing characteristics and management practices

Thumbnail Image
Date
2015-03-01
Authors
Zhao, Yang
Shepherd, Timothy
Swanson, J.
Mench, J.
Karcher, D.
Xin, Hongwei
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Xin, Hongwei
Distinguished Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

This paper is an integral part of the special publication series that arose from the multidisciplinary and multi-institutional project of the Coalition for Sustainable Egg Supply (CSES). The CSES project involves 3 housing systems for egg production at the same research farm site in the Midwest, USA, namely, a conventional cage (CC) house, an aviary (AV) house, and an enriched colony (EC) house. The CC house (141.4 m L × 26.6 m W × 6.1 m H) had a nominal capacity of 200,000 hens (6 hens in a cage at a stocking density of 516 cm2/hen), and the cages were arranged in 10 rows, 8 tiers per cage row, with a perforated aisle walkway at 4-tier height. The AV house (154.2 m L × 21.3 m W × 3.0 m H) and the EC house (154.2 m L × 13.7 m W × 4.0 m H) each had a nominal capacity of 50,000 hens. The AV house had 6 rows of aviary colonies, and the EC house had 5 rows of 4-tier enriched colonies containing perches, nestbox, and scratch pads (60 hens per colony at a stocking density of 752 cm2/hen). The overarching goal of the CSES project, as stated in the opening article of this series, was to comprehensively evaluate the 3 egg production systems from the standpoints of animal behavior and well-being, environmental impact, egg safety and quality, food affordability, and worker health. So that all the area-specific papers would not have to repeat a detailed description of the production systems and the management practices, this paper is written to provide such a description and to be used as a common reference for the companion papers.

Comments

This article is from Poultry Science 94 (2015): 475–484, doi:10.3382/ps/peu077. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Thu Jan 01 00:00:00 UTC 2015
Collections