Assessing Air Velocity Distribution in Three Sizes of Commercial Broiler Houses During Tunnel Ventilation

Thumbnail Image
Date
2017-01-01
Authors
Luck, Brian
Davis, Jeremiah
Purswell, Joseph
Kiess, Aaron
Hoff, Steven
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Hoff, Steven
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agricultural and Biosystems Engineering

Since 1905, the Department of Agricultural Engineering, now the Department of Agricultural and Biosystems Engineering (ABE), has been a leader in providing engineering solutions to agricultural problems in the United States and the world. The department’s original mission was to mechanize agriculture. That mission has evolved to encompass a global view of the entire food production system–the wise management of natural resources in the production, processing, storage, handling, and use of food fiber and other biological products.

History
In 1905 Agricultural Engineering was recognized as a subdivision of the Department of Agronomy, and in 1907 it was recognized as a unique department. It was renamed the Department of Agricultural and Biosystems Engineering in 1990. The department merged with the Department of Industrial Education and Technology in 2004.

Dates of Existence
1905–present

Historical Names

  • Department of Agricultural Engineering (1907–1990)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agricultural and Biosystems Engineering
Abstract

Convective cooling is a critical management strategy for maintaining an environment that promotes production efficiency, thermal comfort, and animal well-being in commercial broiler houses. Variations in house size, design, and equipment configuration contribute greatly to the air velocity distribution within the facility. This study assessed total airflow, air velocity distribution, and quantified the floor area in three facilities experiencing insufficient air velocity for maintenance of production efficiency, thermal comfort, and animal well-being. Test facility 1 was an 18.3 x 170.7 m solid side-wall broiler house, test facility 2 was a 15.24 x 144.8 m solid side-wall broiler house, and test facility 3 was a 12.19 x 121.9 m curtain side-wall broiler house. Total airflow of each facility, measured with a Fan Assessment and Numeration System, was 512,730, 389,495, and 329,270 m3 h-1 for test facilities 1, 2, and 3, respectively. Air velocity distribution patterns were characterized in each house with a Scalable Environment Assessment System (SEAS) and spatial statistics. The air velocity distributions within the test facilities were variable, with notable maxima immediately downstream of the tunnel inlets, which serve as a well-defined vena contracta, and local minima near the leading end of the evaporative pads and the exhaust fans. Equipment within the facilities had an impact on the air velocity distribution by creating reduced cross-sectional areas that resulted in localized increases in air velocity. The percentage of total bird-level floor area in each facility experiencing air velocities below 1.5 m s-1 was 14.3%, 20.7%, and 10.0% for test facilities 1, 2, and 3, respectively. The effective design velocity (Ved) was calculated from total airflow using the measured building cross-sectional area. The Ved measured 2.97, 2.45, and 2.34 m s-1 for test facilities 1, 2, and 3, respectively. Mean cross-sectional air velocity (Vcs) was calculated from SEAS data and normalized using each facility‘s Ved to account for differences in building size for comparison. Test facility 1, the largest of the three houses, generated substantially higher Vcs/Ved than test facilities 2 and 3. Test facilities 2 and 3 maintained a larger proportion of Vcs above Ved than test facility 1. Test facility 1 showed 26.5% of the total house length below Ved, while test facilities 2 and 3 had only 20.8% and 17.5%, respectively, of the total house length below Ved. The lower-velocity regions were due to the length of the evaporative cooling pad inlet and the use of tunnel doors, and the exhaust fan placement on the side-walls in test facility 1 created an additional pronounced low-velocity area. Placement of tunnel ventilation fans on the end-wall of the facility, rather than the side-wall, eliminated the low-velocity region at the exhaust end of the facility. Modifications to current practices for broiler production facility construction and evaporative cooling pad inlet installation would be required to minimize the low-velocity region at the inlet end of these facilities. Consideration of house width and physical arrangement of the air inlets, tunnel fans, and internal equipment are critical for improving the uniformity of air velocity in commercial broiler houses.

Comments

This article is published as Luck, Brian D., Jeremiah D. Davis, Joseph L. Purswell, Aaron S. Kiess, and Steven J. Hoff. "Assessing Air Velocity Distribution in Three Sizes of Commercial Broiler Houses During Tunnel Ventilation." Transactions of the ASABE 60, no. 4 (2017): 1313-1323. doi: 10.13031/trans.12107. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Collections