
Agricultural and Biosystems Engineering Publications
Campus Units
Agricultural and Biosystems Engineering, Civil, Construction and Environmental Engineering, Food Science and Human Nutrition, Toxicology
Document Type
Article
Publication Version
Published Version
Publication Date
11-21-2018
Journal or Book Title
Energies
Volume
11
Issue
11
First Page
3233
Research Focus Area(s)
Biological and Process Engineering and Technology
DOI
10.3390/en11113233
Abstract
In this work, for the first time, the feasibility of obtaining carbonized refuse-derived fuel (CRDF) pelletization from municipal solid waste (MSW) was shown. Production of CRDF by torrefaction of MSW could be the future of recycling technology. The objective was to determine the applied pressure needed to produce CRDF pellets with compressive strength (CS) comparable to conventional biomass pellets. Also, the hypothesis that a binder (water glass (WG)) applied to CRDF as a coating can improve CS was tested. The pelletizing was based on the lab-scale production of CRDF pellets with pressure ranging from 8.5 MPa to 76.2 MPa. The resulting CS pellets increased from 0.06 MPa to 3.44 MPa with applied pelletizing pressure up to the threshold of 50.8 MPa, above which it did not significantly improve (p < 0.05). It was found that the addition of 10% WG to 50.8 MPa CRDF pellets or coating them with WG did not significantly improve the CS (p < 0.05). It was possible to produce durable pellets from CRDF. The CS was comparable to pine pellets. This research advances the concept of energy recovery from MSW, particularly by providing practical information on densification of CRDF originating from the torrefaction of the flammable fraction of MSW–refuse-derived fuel. Modification of CRDF through pelletization is proposed as preparation of lower volume fuel with projected lower costs of its storage and transportation and for a wider adoption of this technology.
Access
Open
Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.
Copyright Owner
The Authors
Copyright Date
2018
Language
en
File Format
application/pdf
Recommended Citation
Białowiec, Andrzej; Micuda, Monika; and Koziel, Jacek A., "Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel" (2018). Agricultural and Biosystems Engineering Publications. 975.
https://lib.dr.iastate.edu/abe_eng_pubs/975
Included in
Bioresource and Agricultural Engineering Commons, Oil, Gas, and Energy Commons, Sustainability Commons
Comments
This article is published as Białowiec, Andrzej, Monika Micuda and Jacek A. Koziel, "Waste to Carbon: Densification of Torrefied Refuse-Derived Fuel." Energies 11 (2018): 3233. DOI: 10.3390/en11113233. Posted with permission.