Campus Units

Aerospace Engineering

Document Type

Conference Proceeding

Conference

17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC 2017)

Publication Version

Published Version

Publication Date

2017

Journal or Book Title

Papers ISROMAC 17

Conference Title

17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC 2017)

Conference Date

December 16-21, 2017

City

Maui, HI

Abstract

This paper presents numerical analysis of an airfoil geometry inspired by the down coat of the night owl. The objective is to understand the mechanisms of airfoil trailing edge noise reduction that has been observed with such designs in previous experiments. The bioinspired geometry consists of an array of “fences” that are applied near the trailing edge of the NACA-0012 baseline airfoil. Wall-resolved large eddy simulations are performed over the baseline and the bioinspired airfoil geometries and the aeroacoustic performance of the two geometries are contrasted. Both models are simulated at chord-based Reynolds number Rec = 5 × 105 , flow Mach number, M = 0.2, and angle of attack, α = 0 . Farfield noise spectra comparisons between the baseline and the bioinspired airfoil near the airfoil trailing edge show reductions with the fences of up to 10 dB. The simulations reveal that the fences lift turbulence eddies away from the airfoil trailing (scattering) edge hence reducing scattering efficiency. These findings suggest that one of the mechanisms of noise reduction is the increased source-scattering edge separation distance.

Comments

This proceeding was published as Bodling, Andrew and Anupam Sharma. "Noise Reduction Mechanisms due to Bio-Inspired Airfoil Designs," In Papers ISROMAC 17, 17th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery (ISROMAC 2017), December 16-21, 2017: Maui, HI, USA.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Share

Article Location

 
COinS