Characterization of Ice Adhesion: Approaches and Modes of Loading

Thumbnail Image
Date
2020-06-08
Authors
Dawood, Bishoy
Yavas, Denizhafn
Giuffre, Christopher
Bastawros, Ashraf
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Bastawros, Ashraf
Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Aerospace EngineeringAmes National LaboratoryMechanical EngineeringMaterials Science and Engineering
Abstract

Airborne structures are vulnerable to atmospheric icing in cold weather operation conditions. Most of the ice adhesion-related works have focused on mechanical ice removal strategies because of practical considerations, while limited literature is available for a fundamental understanding of the ice adhesion process. Here, we present fracture mechanics-based approaches to characterize interfacial fracture parameters for the tensile and shear behavior of a typical ice/aluminum interface. An experimental framework employing single cantilever beam, direct shear, and push-out shear tests were developed to achieve near mode-I and near mode-II fracture conditions at the interface. Both analytical (beam bending and shear-lag analysis), and numerical (finite element analysis incorporating cohesive zone method) models were used to extract mode-I and II interfacial fracture parameters. The combined experimental and numerical results, as well as surveying published results for the direct shear and push-out shear tests, showed that mode-II interfacial strength and toughness could be significantly affected by the test method due to geometrically induced interfacial residual stress. As a result, the apparent toughness of the zero-angle push-out test could reach an order of magnitude higher than those derived from direct shear tests. Moreover, it was found that the interfacial ice adhesion is fracture mode insensitive and roughness insensitive for tensile and shear modes, for the observed modes of failures in this study

Comments

This is a manuscript of a proceeding published as Dawood, B., Yavas, D., Giuffre, C.J. and Bastawros, A. "Characterization of Ice Adhesion: Approaches and Modes of Loading." Paper No. AIAA 2020-2802. In AIAA AVIATION 2020 Forum. (2020): 2802. DOI: 10.2514/6.2020-2802. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Wed Jan 01 00:00:00 UTC 2020