Campus Units

Aerospace Engineering, Mechanical Engineering, Center for Nondestructive Evaluation (CNDE), Electrical and Computer Engineering

Document Type

Conference Proceeding

Conference

44th Annual Review of Progress in Quantitative Nondestructive Evaluation

Publication Version

Published Version

Publication Date

2018

Journal or Book Title

AIP Conference Proceedings

Volume

1949

Issue

1

First Page

020011

DOI

10.1063/1.5031508

Conference Title

44th Annual Review of Progress in Quantitative Nondestructive Evaluation

Conference Date

July 16-21, 2017

City

Provo, UT

Abstract

Industrial applications of additively manufactured components are increasing quickly. Adequate quality control of the parts is necessary in ensuring safety when using these materials. Base material properties, surface conditions, as well as location and size of defects are some of the main targets for nondestructive evaluation of additively manufactured parts, and the problem of adequate characterization is compounded given the challenges of complex part geometry. Numerical modeling can allow the interplay of the various factors to be studied, which can lead to improved measurement design. This paper presents a finite element simulation verified by experimental results of ultrasonic waves scattering from flat bottom holes (FBH) in additive manufacturing materials. A focused beam immersion ultrasound transducer was used for both the modeling and simulations in the additive manufactured samples. The samples were SS17 4 PH steel samples made by laser sintering in a powder bed.

Comments

This proceeding may be downloaded for personal use only. Any other use requires prior permission of the author and AIP Publishing. This proceeding appeared in Taheri, Hossein, L. Koester, T. Bigelow, and Leonard J. Bond. "Finite element simulation and experimental verification of ultrasonic non-destructive inspection of defects in additively manufactured materials." AIP Conference Proceedings 1949, no. 1 (2018): 020011. DOI: 10.1063/1.5031508. Posted with permission.

Copyright Owner

The Author(s)

Language

en

File Format

application/pdf

Share

Article Location

 
COinS