Phase-field approach for stress- and temperature-induced phase transformations that satisfies lattice instability conditions. Part 2. simulations of phase transformations Si I↔Si II

Thumbnail Image
Date
2018-08-01
Authors
Babaei, Hamed
Levitas, Valery
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Aerospace Engineering

The Department of Aerospace Engineering seeks to instruct the design, analysis, testing, and operation of vehicles which operate in air, water, or space, including studies of aerodynamics, structure mechanics, propulsion, and the like.

History
The Department of Aerospace Engineering was organized as the Department of Aeronautical Engineering in 1942. Its name was changed to the Department of Aerospace Engineering in 1961. In 1990, the department absorbed the Department of Engineering Science and Mechanics and became the Department of Aerospace Engineering and Engineering Mechanics. In 2003 the name was changed back to the Department of Aerospace Engineering.

Dates of Existence
1942-present

Historical Names

  • Department of Aerospace Engineering and Engineering Mechanics (1990-2003)

Related Units

Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Mechanical Engineering
The Department of Mechanical Engineering at Iowa State University is where innovation thrives and the impossible is made possible. This is where your passion for problem-solving and hands-on learning can make a real difference in our world. Whether you’re helping improve the environment, creating safer automobiles, or advancing medical technologies, and athletic performance, the Department of Mechanical Engineering gives you the tools and talent to blaze your own trail to an amazing career.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Aerospace EngineeringAmes National LaboratoryMechanical EngineeringMaterials Science and Engineering
Abstract

A complete system of equations of the advanced phase-field theory for martensitic phase transformations (PTs) under a general stress tensor is presented. Theory includes a fully geometrically nonlinear formulation for the general case of finite elastic and transformational strains as well as anisotropic and different elastic properties of phases. Material parameters are calibrated, in particular, based on the crystal lattice instability conditions from atomistic simulations for martensitic PTs between cubic Si I and tetragonal Si II phases under complex triaxial compression-tension loading. A finite element algorithm and numerical procedure is developed and implemented in the code deal.II. Various 3D problems on lattice instabilities and following nanostructure evolution in single-crystal silicon are solved for compression in one direction under lateral stresses and analyzed. Strong effects of the stress states and local stress hysteresis on the interface width and nanostructure evolution are presented. In particular, the interface width diverges when lateral stress tends to the region in which instability stresses for direct and reverse PTs coincide. Direct and reverse transformations both occur in the unique homogeneous way without hysteresis, energy dissipation, and damage due to internal elastic stresses. Stress fields within a sample and especially within interfaces are determined and their effect on the nanostructure evolution is analyzed. Problems with definition of the elastic interfacial tension (stress) are analyzed. It is demonstrated that the instability stresses for initiation of the PTs are independent of the prescribed stress measure; however, this does not mean that PT will be completed at such stresses.

Comments

This is a manuscript of the article Babaei, Hamed, and Valery I. Levitas. "Phase-field approach for stress-and temperature-induced phase transformations that satisfies lattice instability conditions. Part 2. simulations of phase transformations Si I↔Si II." International Journal of Plasticity 107 (2018): 223-245. DOI: 10.1016/j.ijplas.2018.04.006. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections