Campus Units

Aerospace Engineering, Materials Science and Engineering, Mechanical Engineering, Ames Laboratory

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

8-20-2019

Journal or Book Title

Acta Materialia

DOI

10.1016/j.actamat.2019.08.023

Abstract

Molecular dynamics (MD) simulations of the amorphous band nucleation and growth ahead of the tip of a shuffle 60° dislocation pileup at different grain boundaries (GBs) in diamond-cubic (dc) silicon (Si) bicrystal under shear are performed. Amorphization initiates when the local resolved shear stress reaches approximately the same value required for amorphization in a perfect single crystal (8.6-9.3GPa) for the same amorphization plane. Since the local stresses at the tip of a dislocation pileup increase when the number of dislocations in the pileup is increased, the critical applied shear stress τap for the formation of an amorphous shear band significantly decreases with the dislocation accumulation at the GBs. In particular, when the number of the dislocations in a pileup increases from 3 to 8, the critical shear stress drops from 4.7GPa to 1.6GPa for both the Σ9 and Σ19 GBs and from 4.6GPa to 2.1GPa for the Σ3 GB, respectively. After the formation of steps and disordered embryos at the GBs, the atomistic mechanisms responsible for the subsequent amorphous shear band formations near different GBs are found to distinct from each other. For a high-angle GB, such as Σ3, an amorphous band propagates through the crystalline phase along the (112) plane. For the Σ9 GB, partial dislocations forming a stacking fault precede the formation of an amorphous band along the (110) plane. For the Σ19 GB, the one-layer stacking fault along the (111) plane transforms into an interesting intermediate phase: a two-layer band with the atomic bonds being aligned along the (111) plane (i.e., rotated by 30o with respect to the atomic bonds outside the band). This intermediate phase transforms to the amorphous band along the (111) plane under a further shearing. The obtained results represent an atomic-level confirmation of the effectiveness of dislocation pileup at the nucleation site for various strain-induced phase transformations (PTs), and exhibit some limitations.

Comments

This is a manuscript of an article published as Chen, Hao, Valery Levitas, and Liming Xiong. "Amorphization Induced by 60° Shuffle Dislocation Pileup against Different Grain Boundaries in Silicon Bicrystal under Shear." Acta Materialia (2019). DOI: 10.1016/j.actamat.2019.08.023. Posted with permission.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Copyright Owner

Acta Materialia Inc.

Language

en

File Format

application/pdf

Published Version

Share

COinS