Campus Units

Aerospace Engineering, Materials Science and Engineering, Mechanical Engineering, Ames Laboratory

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

11-29-2019

Journal or Book Title

Science

Volume

366

Issue

6469

First Page

1116

Last Page

1121

DOI

10.1126/science.aax7616

Abstract

Elastocaloric cooling, a solid-state cooling technology, exploits the latent heat released and absorbed by stress-induced phase transformations. Hysteresis associated with transformation, however, is detrimental to efficient energy conversion and functional durability. We have created thermodynamically efficient, low-hysteresis elastocaloric cooling materials by means of additive manufacturing of nickel-titanium. The use of a localized molten environment and near-eutectic mixing of elemental powders has led to the formation of nanocomposite microstructures composed of a nickel-rich intermetallic compound interspersed among a binary alloy matrix. The microstructure allowed extremely small hysteresis in quasi-linear stress-strain behaviors—enhancing the materials efficiency by a factor of four to seven—and repeatable elastocaloric performance over 1 million cycles. Implementing additive manufacturing to elastocaloric cooling materials enables distinct microstructure control of high-performance metallic refrigerants with long fatigue life.

Comments

This article is published as Hou, Huilong, Emrah Simsek, Tao Ma, Nathan S. Johnson, Suxin Qian, Cheikh Cisse, Drew Stasak, Naila Al Hasan, Lin Zhou, Yunho Hwang, Reinhard Radermacher, Valery I. Levitas, Matthew J. Kramer, Mohsen Asle Zaeem, Aaron P. Stebner, Ryan T. Ott, Jun Cui, and Ichiro Takeuchi. "Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing." Science 366, no. 6469 (2019): 1116-1121. DOI: 10.1126/science.aax7616. Posted with permission.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Available for download on Sunday, November 29, 2020

Published Version

Share

COinS