Campus Units
Aerospace Engineering, Materials Science and Engineering, Mechanical Engineering, Ames Laboratory
Document Type
Article
Publication Version
Accepted Manuscript
Publication Date
11-29-2019
Journal or Book Title
Science
Volume
366
Issue
6469
First Page
1116
Last Page
1121
DOI
10.1126/science.aax7616
Abstract
Elastocaloric cooling, a solid-state cooling technology, exploits the latent heat released and absorbed by stress-induced phase transformations. Hysteresis associated with transformation, however, is detrimental to efficient energy conversion and functional durability. We have created thermodynamically efficient, low-hysteresis elastocaloric cooling materials by means of additive manufacturing of nickel-titanium. The use of a localized molten environment and near-eutectic mixing of elemental powders has led to the formation of nanocomposite microstructures composed of a nickel-rich intermetallic compound interspersed among a binary alloy matrix. The microstructure allowed extremely small hysteresis in quasi-linear stress-strain behaviors—enhancing the materials efficiency by a factor of four to seven—and repeatable elastocaloric performance over 1 million cycles. Implementing additive manufacturing to elastocaloric cooling materials enables distinct microstructure control of high-performance metallic refrigerants with long fatigue life.
Copyright Owner
The Authors
Copyright Date
2019
Language
en
File Format
application/pdf
Recommended Citation
Hou, Huilong; Simsek, Emrah; Ma, Tao; Johnson, Nathan S.; Qian, Suxin; Cissé, Cheikh; Stasak, Drew; Al Hasan, Naila; Zhou, Lin; Hwang, Yunho; Radermacher, Reinhard; Levitas, Valery I.; Kramer, Matthew J.; Zaeem, Mohsen Asle; Stebner, Aaron P.; Ott, Ryan T.; Cui, Jun; and Takeuchi, Ichiro, "Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing" (2019). Aerospace Engineering Publications. 150.
https://lib.dr.iastate.edu/aere_pubs/150
Comments
This article is published as Hou, Huilong, Emrah Simsek, Tao Ma, Nathan S. Johnson, Suxin Qian, Cheikh Cisse, Drew Stasak, Naila Al Hasan, Lin Zhou, Yunho Hwang, Reinhard Radermacher, Valery I. Levitas, Matthew J. Kramer, Mohsen Asle Zaeem, Aaron P. Stebner, Ryan T. Ott, Jun Cui, and Ichiro Takeuchi. "Fatigue-resistant high-performance elastocaloric materials made by additive manufacturing." Science 366, no. 6469 (2019): 1116-1121. DOI: 10.1126/science.aax7616. Posted with permission.