Campus Units

Aerospace Engineering

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

12-6-2018

Journal or Book Title

Bioinspiration and Biomimetics

Volume

14

Issue

1

First Page

016013

DOI

10.1088/1748-3190/aaf19c

Abstract

Numerical analysis of airfoil geometries inspired by the down coat of the night owl is presented. The bioinspired geometry consists of an array of 'finlet fences', which is placed near the trailing edge of the baseline (NACA 0012) airfoil. Two fences with maximum nondimensional heights, H/delta* = 1 and 2.26 are investigated, where delta* is the displacement thickness at 2.9% chord upstream of the airfoil trailing edge. Wall-resolved large eddy simulations are performed at chord-based Reynolds number, Re-c = 5 x 10(5), flow Mach number, M = 0.2, and angle of attack, alpha = 0 degrees. The simulation results show significant reductions in unsteady surface pressure and farfield radiated noise with the fences, in agreement with the measurements available in the literature. Analysis of the results reveals that the fences increase the distance between the boundary layer turbulence (source) and the airfoil trailing (scattering) edge, which is identified to be the mechanism behind high-frequency noise reduction. These reductions are larger for the taller fence as the source-scattering edge separation is greater. Two-point correlations show that the fences reduce the spanwise coherence at low frequencies for separation distances greater than a fence pitch (distance between two adjacent fences) and increase the coherence for smaller distances, the increase being higher for the taller fence. This increase in coherence and the reduced obliqueness of the leading edge of the fence are hypothesized to be responsible for the small increase in farfield noise at low frequencies observed in the simulations with the taller fence.

Comments

This is a peer-reviewed, un-copyedited version of an article accepted for publication/published in Bioinspiration & Biomimetics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at DOI: 10.1088/1748-3190/aaf19c. Posted with permission.

Copyright Owner

IOP Publishing Ltd

Language

en

File Format

application/pdf

Published Version

Share

COinS