Document Type
Article
Publication Version
Published Version
Publication Date
2009
Journal or Book Title
Energy and Fuels
Volume
23
Issue
9
First Page
4231
Last Page
4235
DOI
10.1021/ef801116x
Abstract
Currently, two main known mechanisms of aluminum (Al) nanoparticle reaction are discussed in the literature, namely those based on diffusion through an oxide shell and melt-dispersion. The two mechanisms lead to opposite predictions in nanoparticle design. The diffusion mechanism suggests that the reduction or complete elimination of the oxide shell will increase Al reactivity, whereas the meltdispersion mechanism suggests an increase in initial oxide thickness up to an optimal value. The goal of this study is to perform critical experiments in a confined flame tube apparatus to compare these two predictions. Specifically, the flame propagation rates of perfluoroalkyl carboxylic acid (C 13F27COOH)-treated Al nanoparticles with and without an alumina shell were measured. Results show that when there is no alumina passivation shell encasing the Al core, the flame rate decreases by a factor of 22-95 and peak pressure deceases by 3 orders of magnitude, in comparison with the Al particles with an oxide shell. These results imply that the melt-dispersion reaction mechanism is responsible for high flame propagation rates observed in these confined tube experiments.
Copyright Owner
American Chemical society
Copyright Date
2009
Language
en
File Format
application/pdf
Recommended Citation
Dikici, Birce; Dean, Steven W.; Pantoya, Michelle L.; Levitas, Valery I.; and Jouet, R. Jason, "Influence of Aluminum Passivation on the Reaction Mechanism: Flame Propagation Studies" (2009). Aerospace Engineering Publications. 49.
https://lib.dr.iastate.edu/aere_pubs/49
Included in
Aerospace Engineering Commons, Materials Science and Engineering Commons, Mechanical Engineering Commons
Comments
Reprinted (adapted) with permission from Energy and Fuels 23 (2009): 4231, doi: 10.1021/ef801116x. Copyright 2009 American Chemical Society.