Campus Units

Aerospace Engineering

Document Type

Article

Publication Version

Published Version

Publication Date

2015

Journal or Book Title

Journal of Applied Physics

Volume

118

Issue

9

First Page

094305

DOI

10.1063/1.4929642

Abstract

Dilatation of aluminum (Al) core for micron-scale particles covered by alumina (Al2O3) shell was measured utilizing x-ray diffraction with synchrotron radiation for untreated particles and particles after annealing at 573 K and fast quenching at 0.46 K/s. Such a treatment led to the increase in flame rate for Al + CuO composite by 32% and is consistent with theoretical predictions based on the melt-dispersion mechanism of reaction for Al particles. Experimental results confirmed theoretical estimates and proved that the improvement of Al reactivity is due to internal stresses. This opens new ways of controlling particle reactivity through creating and monitoring internal stresses.

Comments

This article is published as Levitas, Valery I., Jena McCollum, Michelle L. Pantoya, and Nobumichi Tamura. "Internal stresses in pre-stressed micron-scale aluminum core-shell particles and their improved reactivity." Journal of Applied Physics 118, no. 9 (2015): 094305. doi: 10.1063/1.4929642. Posted with permission.

Copyright Owner

AIP Publishing LLC.

Language

en

File Format

application/pdf

Share

COinS