Campus Units

Aerospace Engineering, Materials Science and Engineering, Mechanical Engineering, Ames Laboratory

Document Type

Article

Publication Version

Published Version

Publication Date

2015

Journal or Book Title

Materials Today: Proceedings

Volume

2

Issue

Supplement 3

First Page

S493

Last Page

S498

DOI

10.1016/j.matpr.2015.07.334

Abstract

Phase field approach (PFA) to the interaction between phase transformations (PTs) and dislocations is developed at large strains as a nontrivial combination of our recent advanced PFAs to martensitic PTs and dislocation evolution. Finite element method (FEM) simulations are performed to solve the coupled phase-field and elasticity equations and are applied to study of the growth and arrest of martensitic plate for temperature-induced PTs, the evolution of dislocations and high pressure phase in a nanograined material under pressure and shear, and the dislocation inheritance for stress-induced PT.

Comments

This article is published as Levitas, V. I., and M. Javanbakht. "Interaction of phase transformations and plasticity at the nanoscale: phase field approach." Materials Today: Proceedings, 2 (2015): S493-S498. 10.1016/j.matpr.2015.07.334. Posted with permission.

Creative Commons License

Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License
This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License.

Copyright Owner

The Authors

Language

en

File Format

application/pdf

Share

COinS