Active-Optical Reflectance Sensing Evaluated for Red and Red-Edge Waveband Sensitivity

Thumbnail Image
Date
2017-01-01
Authors
Bean, Gregory
Kitchen, Newell
Camberato, James
Ferguson, Richard
Fernández, Fabián
Franzen, David
Laboski, Carrie
Nafziger, Emerson
Sawyer, John
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Sawyer, John
Contingent Worker Contingent Worker Contingent Worker Contingent Worker Contingent Worker
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agronomy
Abstract

Uncertainty exists with corn (Zea mays L.) N management due to year-to-year variation in crop N need, soil N supply, and N loss from leaching, volatilization, and denitrification. Active-optical reflectance sensing (AORS) has proven effective in some fields for generating N fertilizer recommendations that improve N use efficiency. However, various sensors utilize different wavebands of light to calculate N fertilizer recommendations making it difficult to know which waveband is most sensitive to plant health. The objective of this research was to evaluate across the US Midwest Corn Belt the performance and sensitivity of the red (R) and red-edge (RE) wavebands. Forty-nine N response trials were conducted across eight states and three growing seasons. Reflectance measurements were collected and topdress N rates (40 to 240 lbs N ac-1 on 40 lbs ac-1 increments) applied at approximately V9 corn development stage. Both R and RE wavebands were compared to the at-planting N fertilizer rate, V5 soil nitrate-N, and end-of-season calculated relative yield. In every comparison the RE waveband demonstrated higher coefficient of determination values over the R waveband. These findings suggest the RE waveband is most sensitive to variations in N management and would work best for in-season AORS management over a geographically-diverse soil and weather region.

Comments

This proceeding was published as Bean, G.M., N.R. Kitchen, J.J. Camberato, P.R. Carter, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A.M. Laboski, E.D. Nafziger, J.E. Sawyer, P.C. Scharf, J.S. Schepers, and J. Shanahan. 2017. Active-optical reflectance sensing evaluated for red and red-edge waveband sensitivity. p. 121-131. In Proc. Forty-Seventh North Central Extension-Industry Soil Fertility Conf., Des Moines, IA. 15-16 Nov. 2017.

Description
Keywords
Citation
DOI
Source
Copyright