Campus Units


Document Type

Conference Proceeding

Publication Version

Published Version

Publication Date


Journal or Book Title

Proceedings of the 47th North Central Extension-Industry Soil Fertility Conferenece



First Page


Last Page


Conference Title

47th North Central Extension-Industry Soil Fertility Conferenece

Conference Date

November 15-16, 2017


Des Moines, Iowa


Uncertainty exists with corn (Zea mays L.) N management due to year-to-year variation in crop N need, soil N supply, and N loss from leaching, volatilization, and denitrification. Active-optical reflectance sensing (AORS) has proven effective in some fields for generating N fertilizer recommendations that improve N use efficiency. However, various sensors utilize different wavebands of light to calculate N fertilizer recommendations making it difficult to know which waveband is most sensitive to plant health. The objective of this research was to evaluate across the US Midwest Corn Belt the performance and sensitivity of the red (R) and red-edge (RE) wavebands. Forty-nine N response trials were conducted across eight states and three growing seasons. Reflectance measurements were collected and topdress N rates (40 to 240 lbs N ac-1 on 40 lbs ac-1 increments) applied at approximately V9 corn development stage. Both R and RE wavebands were compared to the at-planting N fertilizer rate, V5 soil nitrate-N, and end-of-season calculated relative yield. In every comparison the RE waveband demonstrated higher coefficient of determination values over the R waveband. These findings suggest the RE waveband is most sensitive to variations in N management and would work best for in-season AORS management over a geographically-diverse soil and weather region.


This proceeding was published as Bean, G.M., N.R. Kitchen, J.J. Camberato, P.R. Carter, R.B. Ferguson, F.G. Fernandez, D.W. Franzen, C.A.M. Laboski, E.D. Nafziger, J.E. Sawyer, P.C. Scharf, J.S. Schepers, and J. Shanahan. 2017. Active-optical reflectance sensing evaluated for red and red-edge waveband sensitivity. p. 121-131. In Proc. Forty-Seventh North Central Extension-Industry Soil Fertility Conf., Des Moines, IA. 15-16 Nov. 2017.


Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.



File Format



Article Location