The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes

Thumbnail Image
Date
2016-03-15
Authors
Van Meter, K J
Basu, N B
Veenstra, J J
Burras, C.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Burras, C.
Morrill Professor
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agronomy
Abstract

Watershed and global-scale nitrogen (N) budgets indicate that the majority of the N surplus in anthropogenic landscapes does not reach the coastal oceans. While there is general consensus that this 'missing' N either exits the landscape via denitrification or is retained within watersheds as nitrate or organic N, the relative magnitudes of these pools and fluxes are subject to considerable uncertainty. Our study, for the first time, provides direct, large-scale evidence of N accumulation in the root zones of agricultural soils that may account for much of the 'missing N' identified in mass balance studies. We analyzed long-term soil data (1957–2010) from 2069 sites throughout the Mississippi River Basin (MRB) to reveal N accumulation in cropland of 25–70 kg ha−1 yr−1, a total of 3.8 ± 1.8 Mt yr−1 at the watershed scale. We then developed a simple modeling framework to capture N depletion and accumulation dynamics under intensive agriculture. Using the model, we show that the observed accumulation of soil organic N (SON) in the MRB over a 30 year period (142 Tg N) would lead to a biogeochemical lag time of 35 years for 99% of legacy SON, even with complete cessation of fertilizer application. By demonstrating that agricultural soils can act as a net N sink, the present work makes a critical contribution towards the closing of watershed N budgets.

Comments

This article is published as Van Meter, K. J., N. B. Basu, J. J. Veenstra, and C. L. Burras. "The nitrogen legacy: emerging evidence of nitrogen accumulation in anthropogenic landscapes." Environmental Research Letters 11, no. 3 (2016): 035014. doi: 10.1088/1748-9326/11/3/035014. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Fri Jan 01 00:00:00 UTC 2016
Collections