Divergent properties of prolamins in wheat and maize

Thumbnail Image
Date
2013-06-01
Authors
Zhang, Wei
Sangtong, Vavaporn
Peterson, Joan
Scott, M. Paul
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Scott, M. Paul
Affiliate Professor
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agronomy
Abstract

Cereal grains are an important nutritional source of amino acids for humans and livestock worldwide. Wheat, barley, and oats belong to a different subfamily of the grasses than rice and in addition to maize, millets, sugarcane, and sorghum. All their seeds, however, are largely devoid of free amino acids because they are stored during dormancy in specialized storage proteins. Prolamins, the major class of storage proteins in cereals with preponderance of proline and glutamine, are synthesized at the endoplasmic reticulum during seed development and deposited into subcellular structures of the immature endosperm, the protein bodies. Prolamins have diverged during the evolution of the grass family in their structure and their properties. Here, we used the expression of wheat glutenin-Dx5 in maize to examine its interaction with maize prolamins during endosperm development. Ectopic expression of Dx5 alters protein body morphology in a way that resembles non-vitreous kernel phenotypes, although Dx5 alone does not cause an opaque phenotype. However, if we lower the amount of γ-zeins in Dx5 maize through RNAi, a non-vitreous phenotype emerges and the deformation on the surface of protein bodies is enhanced, indicating that Dx5 requires γ-zeins for its proper subcellular organization in maize.

Comments

This article is published as Zhang, Wei, Vavaporn Sangtong, Joan Peterson, M. Paul Scott, and Joachim Messing. "Divergent properties of prolamins in wheat and maize." Planta 237, no. 6 (2013): 1465-1473, doi: 10.1007/s00425-013-1857-5.

Description
Keywords
Citation
DOI
Copyright
Collections