Tillage, Crop Rotation, and Cultural Practice Effects on Dryland Soil Carbon Fractions

Thumbnail Image
Date
2012-09-01
Authors
Sainju, Upendra
Lenssen, Andrew
Caesar-TonThat, TheCan
Jabro, Jalai
Lartey, Robert
Evans, Robert
Allen, Brett
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Lenssen, Andrew
Professor Emeritus
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agronomy
Abstract

Information is needed on novel management practices to increase dryland C sequestration and soil quality in the northern Great Plains, USA. We evaluated the effects of tillage, crop rotation, and cultural practice on dryland crop biomass (stems and leaves) yield, surface residue, and soil C fractions at the 0-20 cm depth from 2004 to 2008 in a Williams loam in eastern Montana, USA. Treatments were two tillage (no-tillage [NT] and conventional tillage [CT]), two crop rotations (continuous spring wheat [Triticum aestivum L.] [CW] and spring wheat-barley [Hordeum vulgaris L.] hay-corn [Zea mays L.]-pea [Pisum sativum L.] [W-B-C-P]), and two cultural practices (regular [conventional seed rates and plant spacing, conventional planting date, broadcast N fertilization, and reduced stubble height] and ecological [variable seed rates and plant spacing, delayed planting, banded N fertilization, and increased stubble height]). Carbon fractions were soil organic C (SOC), particulate organic C (POC), microbial biomass C (MBC), and potential C mineralization (PCM). Crop biomass was 24% to 39% greater in W-B-C-P than in CW in 2004 and 2005. Surface residue C was 36% greater in NT than in CT in the regular practice. At 5 - 20 cm, SOC was 14% greater in NT with W-B-C-P and the regular practice than in CT with CW and the ecological practice. In 2007, POC and PCM at 0 - 20 cm were 23 to 54% greater in NT with CW or the regular practice than in CT with CW or the ecological practice. Similarly, MBC at 10 - 20 cm was 70% greater with the regular than with the ecological practice in NT with CW. Surface residue, PCM, and MBC declined from autumn 2007 to spring 2008. No-tillage with the regular cultural practice increased surface residue and soil C storage and microbial biomass and activity compared to conventional tillage with the ecological practice. Mineralization reduced surface residue and soil labile C fractions from autumn to spring.

Comments

This article is from Open Journal of Soil Science 2 (2012): 242–255, doi:10.4236/ojss.2012.23029.

Description
Keywords
Citation
DOI
Copyright
Collections