Campus Units

Agronomy

Document Type

Article

Publication Date

6-7-2012

Journal or Book Title

BMC Nioinformatics

Volume

13

Issue

125

DOI

10.1186/1471-2105-13-125

Abstract

Background

Self-incompatibility (SI) is a biological mechanism to avoid inbreeding in allogamous plants. In grasses, this mechanism is controlled by a two-locus system (S-Z). Calculation of male and female gamete frequencies is complex for tetraploid species. We are not aware of any software available for predicting pollen haplotype frequencies and pollen compatibility in tetraploid species.

Results

PollenCALC is a software tool written in C++ programming language that can predict pollen compatibility percentages for polyploid species with a two-locus (S, Z) self-incompatibility system. The program predicts pollen genotypes and frequencies based on defined meiotic parameters for allo- or autotetraploid species with a gametophytic S-Z SI system. These predictions can be used to obtain expected values for for diploid and for (allo- or autotetraploidy SI grasses.

Conclusion

The information provided by this calculator can be used to predict compatibility of pair-crosses in plant breeding applications, to analyze segregation distortion for S and Z genes, as well as linked markers in mapping populations, hypothesis testing of the number of S and Z alleles in a pair cross, and the underlying genetic model.

Comments

This article is published as Aguirre, Andrea Arias, Bernd Wollenweber, Ursula K. Frei, and Thomas Lübberstedt. "PollenCALC: Software for estimation of pollen compatibility of self-incompatible allo-and autotetraploid species." BMC bioinformatics 13, no. 1 (2012): 125. doi: 10.1186/1471-2105-13-125. Posted with permission.

Creative Commons License

Creative Commons Attribution 4.0 License
This work is licensed under a Creative Commons Attribution 4.0 License.

Copyright Owner

Arias Aguirre et al.

Language

en

File Format

application/pdf

Share

COinS