Campus Units
Agronomy
Document Type
Article
Publication Version
Published Version
Publication Date
10-1996
Journal or Book Title
Soil Science Society of America Journal
Volume
60
Issue
3
First Page
880
Last Page
887
DOI
10.2136/sssaj1996.03615995006000030029x
Abstract
Subsurface water-flow barriers have the potential for reducing NO3-N leaching and may improve fertilizer-use efficiency in cropping systems. This concept was investigated in field lysimeters near Ames, IA, filled with Sparta loamy fine sand (sandy, mixed mesic Entic Hapludoll) in 1989 and 1990. Our objectives were to determine (i) the effects of subsurface water-flow barriers on leaching losses of NO3-N and Cl− and on N uptake by corn plants, and (ii) the effects of an absorbent (vermiculite) on the leaching of NO3-N and Cl−. Subsurface water-flow barrier treatments were: no barrier (NB), a polyethylene sheet placed above the banded chemicals (PA), a polyethylene sheet placed below the band (PB), and a compacted soil layer formed in situ above the chemicals (CL). In 1989 with corn (Zea mays L.) plants growing in the lysimeters, subsurface barriers delayed and reduced leaching and increased plant N uptake compared with NB. The PA treatment was the most effective, reducing Cl− and NO3-N leaching by 24 and 21%, respectively, and doubling total N in corn shoots compared with NB. The CL treatment reduced anion leaching by 12%, but did not affect total plant N. In 1990, the subsurface barrier treatments were combined with two application methods, solution banding (S) and solution-vermiculite mixture banding (V). Averaged across barrier types, V banding delayed initial breakthrough of Cl− and NO3-N by 1.5 and 2.5 mm, respectively, and reduced the peak anion concentrations by an average of 25% compared with the S banding.
Rights
Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. Content of this document is not copyrighted.
Language
en
File Format
application/pdf
Recommended Citation
Kiuchi, M.; Horton, Robert Jr.; and Kaspar, Tom C., "Managing Soil-Water and Chemical Transport with Subsurface Flow Barriers" (1996). Agronomy Publications. 320.
https://lib.dr.iastate.edu/agron_pubs/320
Included in
Agronomy and Crop Sciences Commons, Horticulture Commons, Hydrology Commons, Soil Science Commons
Comments
This article is published as Kiuchi, M., R. Horton, and T. C. Kaspar. "Managing soil-water and chemical transport with subsurface flow barriers." Soil Science Society of America Journal 60, no. 3 (1996): 880-887. Doi; 10.2136/sssaj1996.03615995006000030029x.