Campus Units

Agronomy

Document Type

Article

Publication Version

Accepted Manuscript

Publication Date

3-6-2017

Journal or Book Title

Molecular Plant

Volume

10

Issue

3

First Page

483

Last Page

497

DOI

10.1016/j.molp.2017.02.002

Abstract

Sugarcane mosaic virus (SCMV) causes substantial losses of grain yield and forage biomass in susceptible maize worldwide. A major quantitative trait locus, Scmv1, has been identified to impart strong resistance to SCMV at the early infection stage. Here, we demonstrate that ZmTrxh, encoding an atypical h-type thioredoxin, is the causal gene at Scmv1, and that its transcript abundance correlated strongly with maize resistance to SCMV. ZmTrxh alleles, whether they are resistant or susceptible, share the identical coding/proximal promoter regions, but vary in the upstream regulatory regions. ZmTrxh lacks two canonical cysteines in the thioredoxin active-site motif and exists uniquely in the maize genome. Because of this, ZmTrxh is unable to reduce disulfide bridges but possesses a strong molecular chaperone-like activity. ZmTrxh is dispersed in maize cytoplasm to suppress SCMV viral RNA accumulation. Moreover, ZmTrxh-mediated maize resistance to SCMV showed no obvious correlation with the salicylic acid- and jasmonic acid-related defense signaling pathways. Taken together, our results indicate that ZmTrxh exhibits a distinct defense profile in maize resistance to SCMV, differing from previously characterized dominant or recessive potyvirus resistance genes.

Comments

This is a manuscript published as Liu, Qingqing, Huanhuan Liu, Yangqing Gong, Yongfu Tao, Lu Jiang, Weiliang Zuo, Qin Yang et al. "An atypical thioredoxin imparts early resistance to Sugarcane Mosaic Virus in Maize." Molecular Plant 10, no. 3 (2017): 483-497. doi: 10.1016/j.molp.2017.02.002. Posted with permission.

Copyright Owner

Springer Verlag

Language

en

File Format

application/pdf

Published Version

Share

COinS