Field Measurement of Soil Surface Chemical Transport Properties for Comparison of Management Zones

Thumbnail Image
Date
2007-01-01
Authors
Heitman, J. L.
Gaur, A.
Horton, R.
Jaynes, D. B.
Kaspar, T. C.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Horton, Robert
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agronomy
Abstract

Management of chemicals in soil is important, yet the complexity of field soils limits prediction of management effects on transport. To date, few methods have been available for field measurement of chemical transport properties, but a recently developed dripper–time domain reflectometry technique allows rapid collection of data for determining these properties. The objective of this work was to apply this technique for comparison of chemical transport properties for different soil management zones. Experiments were conducted comparing four interrow management zones: no-till nontrafficked, no-till trafficked, chisel plow nontrafficked, and chisel plow trafficked. Drip emitters were positioned at 12 locations in each zone and used to apply water followed by a step input of CaCl2 tracer solution. Breakthrough curves were measured via electrical conductivity with time domain reflectometry probes. The mobile–immobile model was fit to the breakthrough curves to determine chemical transport properties. Mean chemical transport properties were 0.34, 0.11 h−1, 10 cm h−1, 164 cm2 h−1, and 5 cm, for the immobile water fraction, mass exchange coefficient, average pore-water velocity, mobile dispersion coefficient, and dispersivity, respectively. All five properties showed significant differences between management zones. Differences in mass exchange and mobile dispersion coefficients coincided with differences in tillage, while differences in mean pore water velocities coincided with differences in traffic. The immobile water fraction was largest for the no-till nontrafficked zone. These results represent one of very few reports for field measurement of chemical transport properties and the first application of this approach for comparison of chemical transport properties across management zones.

Comments

This article is published as Heitman, Josh L., Anju Gaur, Robert Horton, Dan B. Jaynes, and Tom C. Kaspar. "Field measurement of soil surface chemical transport properties for comparison of management zones." Soil Science Society of America Journal 71, no. 2 (2007): 529-536. doi: 10.2136/sssaj2006.0254. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Collections