Campus Units

Agronomy

Document Type

Article

Publication Version

Published Version

Publication Date

2012

Journal or Book Title

Soil Science Society of America Journal

Volume

76

Issue

6

First Page

1978

Last Page

1986

DOI

10.2136/sssaj2012.0023N

Abstract

Soil heat transfer occurs by conduction and convection. Soil temperatures below infiltrating water can provide a signal for water flux. In earlier work, analysis of field measurements with a sine wave model indicated that convection heat transfer made significant contributions to the subsurface temperature oscillations. In this work, we used a Fourier series to describe soil surface temperature variations with time. The conduction and convection heat transfer equation with a multi-sinusoidal wave boundary condition was solved analytically using a Fourier transformation. Soil temperature values calculated by the single sine wave model and by the Fourier series model were compared with field soil temperature values measured at depths of 0.1 and 0.3 m below an infiltrating ponded surface. The Fourier series model provided better estimates of observed field temperatures than the sine wave model. The new model provides a general way to describe soil temperature under an infiltrating water source.

Comments

This article is published as Wang, Linlin, Zhiqiu Gao, Robert Horton, Donald H. Lenschow, Kai Meng, and Dan B. Jaynes. "An analytical solution to the one-dimensional heat conduction–convection equation in soil." Soil Science Society of America Journal 76, no. 6 (2012): 1978-1986. doi: 10.2136/sssaj2012.0023N. Posted with permission.

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf

Share

COinS