Campus Units

Agronomy

Document Type

Article

Publication Version

Published Version

Publication Date

8-2016

Journal or Book Title

Plant Breeding

Volume

135

Issue

4

First Page

429

Last Page

438

DOI

10.1111/pbr.12387

Abstract

This study aimed at developing, characterizing and evaluating two maize phenotypic-selected introgression libraries for a collection of dominant plant height (PHT)-increasing alleles by introgressing donor chromosome segments (DCS) from Germplasm Enhancement of Maize (GEM) accessions into elite inbred lines: PHB47 and PHZ51. Different backcross generations (BC1-BC4) were developed and the tallest 23 phenotype-selected introgression families (PIFs) from each introgression library (PHB47 or PHZ51) were selected for single nucleotide polymorphism genotyping to localize DCS underlying PHT. The result shows that most PIFs carrying DCS were significantly (α = 0.01) taller than the respective recurrent parent. In addition, they contained larger donor genome proportions than expected in the absence of selection or random mating across all BC generations. The DCS were distributed over the whole genome, indicating a complex genetic nature underlying PHT. We conclude that our PIFs are enriched for favourable PHT-increasing alleles. These two libraries offer opportunities for future PHT gene isolation and allele characterization and for breeding purposes, such as novel cultivars for biofuel production.

Comments

This article is published as Abdel-Ghani, A. H., Hu, S., Chen, Y., Brenner, E. A., Kumar, B., Blanco, M. and Lübberstedt, T. (2016), Genetic architecture of plant height in maize phenotype-selected introgression families. Plant Breed, 135: 429–438. doi: 10.1111/pbr.12387.

Rights

Works produced by employees of the U.S. Government as part of their official duties are not copyrighted within the U.S. The content of this document is not copyrighted.

Language

en

File Format

application/pdf

Share

COinS