Physicochemical Organic Matter Stabilization across a Restored Grassland Chronosequence

Thumbnail Image
Supplemental Files
Date
2018-12-27
Authors
Bugeja, Shane
Castellano, Michael
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Research Projects
Organizational Units
Organizational Unit
Agronomy

The Department of Agronomy seeks to teach the study of the farm-field, its crops, and its science and management. It originally consisted of three sub-departments to do this: Soils, Farm-Crops, and Agricultural Engineering (which became its own department in 1907). Today, the department teaches crop sciences and breeding, soil sciences, meteorology, agroecology, and biotechnology.

History
The Department of Agronomy was formed in 1902. From 1917 to 1935 it was known as the Department of Farm Crops and Soils.

Dates of Existence
1902–present

Historical Names

  • Department of Farm Crops and Soils (1917–1935)

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Agronomy
Abstract

In reconstructed grasslands, soil organic matter (SOM) is the largest CO2 and reactive N sink but SOM gains after reconstruction rarely achieve precultivation levels. Through a chronosequence of reconstructed grasslands 1 to 21 yr after establishment, we explored which physicochemical mechanisms protect accumulated soil organic C (SOC) and N from mineralization. After 21 yr, total SOC and soil N concentrations increased by 32 and 23%. The SOC concentration was within 5% of a new equilibrium but was 64% of a never‐cultivated remnant. Chemically stabilized C and N pools on free silt and clay surfaces increased with time. Coarse particulate organic matter C increased with time but accounted for <12% of SOC. Microaggregate‐stabilized SOM did not change. The positive linear relationship between total SOC and free silt and clay C indicates that 21 yr after establishment, reconstructions have unsatisfied capacity for further SOM storage, despite proximity to a new SOC equilibrium. The accumulated C and N associated with free silt and clay suggest that ammonium oxalateextractable Fe (AmOx‐Fe) and polyvalent cation concentrations could be correlated with total C and N stocks. These promote SOM stabilization and were possibly affected by human activity before reconstruction. However, AmOx‐Fe and polyvalent cation concentrations were not associated with total SOC or soil N and could not explain the slowing SOM accumulation. Regardless of time since reconstruction, AmOx‐Fe was highly concentrated on microaggregate surfaces compared with other fractions and was positively associated with microaggregate C and N, suggesting a link between Fe and microaggregate stabilization.

Comments

This is a manuscript of an article published as Bugeja, Shane M., and Michael J. Castellano. "Physicochemical Organic Matter Stabilization across a Restored Grassland Chronosequence." Soil Science Society of America Journal 82, no. 6 (2018): 1559-1567. doi: 10.2136/sssaj2018.07.0259. Posted with permission.

Description
Keywords
Citation
DOI
Copyright
Mon Jan 01 00:00:00 UTC 2018
Collections