Optical absorption properties of Ge2–44 and P-doped Ge nanoparticles

Thumbnail Image
Date
2017-12-01
Authors
Qin, Wei
Lu, Wen-Cai
Zhao, Li-Zhen
Ho, Kai-Ming
Wang, Cai-Zhuang
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

The optical absorption properties of non-crystalline and crystalline Ge nanoparticles with the sizes from ∼2.5 to 15 Å have been studied at the B3LYP/6-31G level using time-dependent density functional theory. Hydrogen passivation and phosphorus doping on some selected Ge nanoparticles were also calculated. With the increase of cluster size, the optical absorption spectra of the non-crystalline Ge nanoparticles change from many peaks to a continuous broad band and at the same time exhibit a systematic red-shift. Doping phosphorus also causes the absorption spectra to shift toward the lower energy region for both non-crystalline and crystalline Ge nanoparticles. The non-crystalline Ge nanoparticles are found to have stronger absorption in the visible region in comparison with the crystalline ones, regardless phosphorus doping.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections