Quantum tricritical point in the temperature-pressure-magnetic field phase diagram of CeTiGe3

Thumbnail Image
Date
2018-01-15
Authors
Kaluarachchi, Udhara
Taufor, Valentin
Bud’ko, Sergey
Canfield, Paul
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

We report the temperature-pressure-magnetic-field phase diagram of the ferromagnetic Kondo-lattice CeTiGe 3 determined by means of electrical resistivity measurements. Measurements up to ∼ 5.8 GPa reveal a rich phase diagram with multiple phase transitions. At ambient pressure, CeTiGe 3 orders ferromagnetically at T C = 14 K. Application of pressure suppresses T C , but a pressure-induced ferromagnetic quantum criticality is avoided by the appearance of two new successive transitions for p > 4.1 GPa that are probably antiferromagnetic in nature. These two transitions are suppressed under pressure, with the lower-temperature phase being fully suppressed above 5.3 GPa. The critical pressures for the presumed quantum phase transitions are p 1 ≅ 4.1 GPa and p 2 ≅ 5.3 GPa. Above 4.1 GPa, application of magnetic field shows a tricritical point evolving into a wing-structure phase with a quantum tricritical point at 2.8 T at 5.4 GPa, where the first-order antiferromagnetic-ferromagnetic transition changes into the second-order antiferromagnetic-ferromagnetic transition.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections