Publication Date
7-2017
DOI
10.1016/j.ultramic.2016.09.001
Journal Title
Ultramicroscopy
Volume Number
178
First Page
125
Last Page
130
Abstract
Electron correlation microscopy (ECM) is a way to measure structural relaxation times, τ, of liquids with nanometer-scale spatial resolution using coherent electron scattering equivalent of photon correlation spectroscopy. We have applied ECM with a 3.5 nm diameter probe to Pt57.5Cu14.7Ni5.3P22.5 amorphous nanorods and Pd40Ni40P20 bulk metallic glass (BMG) heated inside the STEM into the supercooled liquid region. These data demonstrate that the ECM technique is limited by the characteristics of the time series, which must be at least 40τ to obtain a well-converged correlation function g2(t), and the time per frame, which must be less than 0.1τ to obtain sufficient sampling. A high-speed direct electron camera enables fast acquisition and affords reliable g2(t) data even with low signal per frame.