Synthesis, structural characterization and luminescence properties of 1‐carboxymethyl‐3‐ethylimidazolium chloride

Thumbnail Image
Date
2018-06-01
Authors
Prodius, Denis
Wilk-Kozubek, Magdalena
Mudring, Anja-Verena
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryMaterials Science and Engineering
Abstract

A microcrystalline carboxyl-functionalized imidazolium chloride, namely 1-carboxymethyl-3-ethylimidazolium chloride, C7H11N2O2+center dot Cl-, has been synthesized and characterized by elemental analysis, attenuated total reflectance Fourier transform IR spectroscopy (ATR-FT-IR), single-crystal X-ray diffraction, thermal analysis (TGA/DSC), and photoluminescence spectroscopy. In the crystal structure, cations and anions are linked by C-H center dot center dot center dot Cl and C-H center dot center dot center dot O hydrogen bonds to create a helix along the [010] direction. Adjacent helical chains are further interconnected through O-H center dot center dot center dot Cl and C-H center dot center dot center dot O hydrogen bonds to form a (10(1) over bar) layer. Finally, neighboring layers are joined together via C-H center dot center dot center dot Cl contacts to generate a three-dimensional supramolecular architecture. Thermal analyses reveal that the compound melts at 449.7 K and is stable up to 560.0 K under a dynamic air atmosphere. Photoluminescence measurements show that the compound exhibits a blue fluorescence and a green phosphorescence associated with spin-allowed ((1)pi <- (1)pi*) and spin-forbidden ((1)pi <- (3)pi*) transitions, respectively. The average luminescence lifetime was determined to be 1.40 ns for the short-lived ((1)pi <- (1)pi*) transition and 105 ms for the long-lived ((1)pi <- (3)pi*) transition.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections