Publication Date

5-23-2018

Department

Ames Laboratory; Chemistry

Campus Units

Chemistry, Ames Laboratory

Report Number

IS-J 9668

DOI

10.1021/acs.jpca.8b01794

Journal Title

The Journal of Physical Chemistry A

Volume Number

122

Issue Number

23

First Page

5223

Last Page

5237

Abstract

A novel hybrid correlation energy (HyCE) approach is proposed that determines the total correlation energy via distinct computation of its internal and external components. This approach evolved from two related studies. First, rigorous assessment of the accuracies and size extensivities of a number of electron correlation methods, that include perturbation theory (PT2), coupled-cluster (CC), configuration interaction (CI), and coupled electron pair approximation (CEPA), shows that the CEPA(0) variant of the latter and triples-corrected CC methods consistently perform very similarly. These findings were obtained by comparison to near full CI results for four small molecules and by charting recovered correlation energies for six steadily growing chain systems. Second, by generating valence virtual orbitals (VVOs) and utilizing the CEPA(0) method, we were able to partition total correlation energies into internal (or nondynamic) and external (or dynamic) parts for the aforementioned six chain systems and a benchmark test bed of 36 molecules. When using triple-ζ basis sets it was found that per orbital internal correlation energies were appreciably larger than per orbital external energies and that the former showed far more chemical variation than the latter. Additionally, accumulations of external correlation energies were seen to proceed smoothly, and somewhat linearly, as the virtual space is gradually increased. Combination of these two studies led to development of the HyCE approach, whereby the internal and external correlation energies are determined separately by CEPA(0)/VVO and PT2/external calculations, respectively. When applied to the six chain systems and the 36-molecule benchmark test set it was found that HyCE energies followed closely those of triples-corrected CC and CEPA(0) while easily outperforming MP2 and CCSD. The success of the HyCE approach is more notable when considering that its cost is only slightly more than MP2 and significantly cheaper than the CC approaches.

Language

en

Department of Energy Subject Categories

37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Available for download on Thursday, May 23, 2019

Share

COinS