Vertically Oriented and Interpenetrating CuSe Nanosheet Films with Open Channels for Flexible All-Solid-State Supercapacitors

Thumbnail Image
Supplemental Files
Date
2017-03-22
Authors
Li, Lingzhi
Gong, Jiangfeng
Liu, Chunyan
Tian, Yazhou
Han, Min
Wang, Qianjin
Hong, Xihao
Ding, Qingping
Zhu, Weihua
Bao, Jianchun
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National Laboratory
Abstract

As a p-type multifunctional semiconductor, CuSe nanostructures show great promise in optoelectronic, sensing, and photocatalytic fields. Although great progress has been achieved, controllable synthesis of CuSe nanosheets (NSs) with a desirable spacial orientation and open frameworks remains a challenge, and their use in supercapacitors (SCs) has not been explored. Herein, a highly vertically oriented and interpenetrating CuSe NS film with open channels is deposited on an Au-coated polyethylene terephthalate substrate. Such CuSe NS films exhibit high specific capacitance (209 F g–1) and can be used as a carbon black- and binder-free electrode to construct flexible, symmetric all-solid-state SCs, using polyvinyl alcohol–LiCl gel as the solid electrolyte. A device fabricated with such CuSe NS films exhibits high volumetric specific capacitance (30.17 mF cm–3), good cycling stability, excellent flexibility, and desirable mechanical stability. The excellent performance of such devices results from the vertically oriented and interpenetrating configuration of CuSe NS building blocks, which can increase the available surface and facilitate the diffusion of electrolyte ions. Moreover, as a prototype for application, three such solid devices in series can be used to light up a red light-emitting diode.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections