A self-contained algorithm for determination of solid-liquid equilibria in an alloy system

Thumbnail Image
Date
2018-07-01
Authors
Yang, L.
Sun, Y.
Ye, Z.
Zhang, F.
Mendelev, M.
Wang, Cai-Zhuang
Ho, Kai-Ming
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

We describe a self-contained procedure to evaluate the free energy of liquid and solid phases of an alloy system. The free energy of a single-element solid phase is calculated with thermodynamic integration using the Einstein crystal as the reference system. Then, free energy difference between the solid and liquid phases is calculated by Gibbs-Duhem integration. The central part of our method is the construction of a reversible alchemical path connecting a pure liquid and a liquid alloy to calculate the mixing enthalpy and entropy. We have applied the method to calculate the free energy of solid and liquid phases in the Al-Sm system. The driving force for fcc-Al nucleation in Al-Sm liquid and the melting curve for fcc-Al and Al3Sm are also calculated.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections