The crystal facet-dependent electrochemical performance of TiO2 nanocrystals for heavy metal detection: Theoretical prediction and experimental proof

Thumbnail Image
Date
2018-05-15
Authors
Liao, Jianjun
Yang, Fan
Wang, Cai-Zhuang
Lin, Shiwei
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

Tailored design/fabrication of electroanalytical materials with highly-active exposed crystal planes is of great importance for the development of electrochemical sensing. In this work, combining experimental and theoretical efforts, we reported a facile strategy to fabricate TiO2 nanocrystals with tunable electrochemical performance for heavy metal detection. Density functional theory (DFT) calculations indicated that TiO2 (001) facet showed relative larger adsorption energy and lower diffusion energy barrier toward heavy metal ions, which is favorable for obtaining better electrochemical stripping behaviors. Based on this prediction, a series of TiO2 nanocrystals with different ratios of exposed (001) and (101) facets were synthesized. Electrochemical stripping experiments further demonstrated that with the increase of the percentage of exposed (001) facet, the sensitivity toward Pb(II) and Cd(II) was increased accordingly. When the percentage of exposed (001) facet was increased from 7% to 80%, the sensitivity increased by 190% and 93% for Pb(II) and Cd(II), respectively. Our work provides an effective route to construct advanced electroanalytical materials for sensing.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections