Nodeless superconductivity in the type-II Dirac semimetal PdTe2: London penetration depth and pairing-symmetry analysis

Thumbnail Image
Date
2018-07-01
Authors
Jo, Na Hyun
Scheurer, Mathias
Tanatar, Makariy
Bud’ko, Sergey
Orth, Peter
Canfield, Paul
Prozorov, Ruslan
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Orth, Peter
Associate Professor
Person
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

Superconducting gap structure was probed in type-II Dirac semimetal PdTe2 by measuring the London penetration depth using the tunnel diode resonator technique. At low temperatures, the data for two samples are well described by a weak-coupling exponential fit yielding λ(T=0)=230 nm as the only fit parameter at a fixed Δ(0)/Tc≈1.76, and the calculated superfluid density is consistent with a fully gapped superconducting state characterized by a single gap scale. Electrical resistivity measurements for in-plane and inter-plane current directions find very low and nearly temperature-independent normal-state anisotropy. The temperature dependence of resistivity is typical for conventional phonon scattering in metals. We compare these experimental results with expectations from a detailed theoretical symmetry analysis and reduce the number of possible superconducting pairing states in PdTe2 to only three nodeless candidates: a regular, topologically trivial s-wave pairing, and two distinct odd-parity triplet states that both can be topologically nontrivial depending on the microscopic interactions driving the superconducting instability.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections