Pore diameter dependence of catalytic activity: p-nitrobenzaldehyde conversion to an aldol product in amine-functionalized mesoporous silica

No Thumbnail Available
Date
2018-07-09
Authors
Garcia, Andres
Slowing, Igor
Evans, James
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Mathematics
Welcome to the exciting world of mathematics at Iowa State University. From cracking codes to modeling the spread of diseases, our program offers something for everyone. With a wide range of courses and research opportunities, you will have the chance to delve deep into the world of mathematics and discover your own unique talents and interests. Whether you dream of working for a top tech company, teaching at a prestigious university, or pursuing cutting-edge research, join us and discover the limitless potential of mathematics at Iowa State University!
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyMathematicsChemistry
Abstract

The reaction yield for conversion of p-nitrobenzaldehyde (PNB) to an aldol product in amine-functionalized mesoporous silica nanoparticles (MSN) exhibits a 20-fold enhancement for a modest increase in pore diameter, d. This enhanced catalytic activity is shown to reflect a strong increase in the “passing propensity,” 𝒫, of reactant and product species inside the pores. We find that 𝒫 ≈ 0, corresponding to single-file diffusion, applies for the smallest d which still significantly exceeds the linear dimensions of PNB and the aldol product. However, in this regime of narrow pores, these elongated species must align with each other and with the pore axis in order to pass. Thus, 𝒫 reflects both translational and rotational diffusion. Langevin simulation accounting for these features is used to determine 𝒫 versus d. The results are also augmented by analytic theory for small and large d where simulation is inefficient. The connection with the catalytic activity and yield is achieved by the incorporation of results for 𝒫 into a multi-scale modeling framework. Specifically, we apply a spatially coarse-grained (CG) stochastic model for the overall catalytic reaction-diffusion process in MSN. Pores are treated as linear arrays of cells from the ends of which species adsorb and desorb, and between which species hop and exchange, with the exchange rate reflecting 𝒫. CG model predictions including yield are assessed by Kinetic Monte Carlo simulation.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections