Title

Emergent Magnetic Degeneracy in Iron Pnictides due to the Interplay between Spin-Orbit Coupling and Quantum Fluctuations

Publication Date

8-3-2018

Department

Physics and Astronomy; Ames Laboratory

Campus Units

Physics and Astronomy, Ames Laboratory

OSTI ID+

1464480

Report Number

IS-J 9727

DOI

10.1103/PhysRevLett.121.057001

Journal Title

Physical Review Letters

Volume Number

121

Issue Number

5

First Page

057001

Abstract

Recent experiments in iron pnictide superconductors reveal that, as the putative magnetic quantum critical point is approached, different types of magnetic order coexist over a narrow region of the phase diagram. Although these magnetic configurations share the same wave vectors, they break distinct symmetries of the lattice. Importantly, the highest superconducting transition temperature takes place close to this proliferation of near-degenerate magnetic states. In this Letter, we employ a renormalization group calculation to show that such a behavior naturally arises due to the effects of spin-orbit coupling on the quantum magnetic fluctuations. Formally, the enhanced magnetic degeneracy near the quantum critical point is manifested as a stable Gaussian fixed point with a large basin of attraction. Implications of our findings to the superconductivity of the iron pnictides are also discussed.

Language

en

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS