Tailoring Bandgap of Perovskite BaTiO3 by Transition Metals Co-Doping for Visible-Light Photoelectrical Applications: A First-Principles Study

Thumbnail Image
Date
2018-06-21
Authors
Yang, Fan
Yang, Liang
Ai, Changzhi
Xie, Pengcheng
Lin, Shiwei
Wang, Cai-Zhuang
Lu, Xihong
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and Astronomy
Abstract

The physical and chemical properties of V-M″ and Nb-M″ (M″ is 3d or 4d transition metal) co-doped BaTiO3were studied by first-principles calculation based on density functional theory. Our calculation results show that V-M″ co-doping is more favorable than Nb-M″ co-doping in terms of narrowing the bandgap and increasing the visible-light absorption. In pure BaTiO3, the bandgap depends on the energy levels of the Ti 3d and O 2p states. The appropriate co-doping can effectively manipulate the bandgap by introducing new energy levels interacting with those of the pure BaTiO3. The optimal co-doping effect comes from the V-Cr co-doping system, which not only has smaller impurity formation energy, but also significantly reduces the bandgap. Detailed analysis of the density of states, band structure, and charge-density distribution in the doping systems demonstrates the synergistic effect induced by the V and Cr co-doping. The results can provide not only useful insights into the understanding of the bandgap engineering by element doping, but also beneficial guidance to the experimental study of BaTiO3 for visible-light photoelectrical applications.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections