Growing Signals from the Noise: Challenging Nuclei in Materials DNP

Thumbnail Image
Date
2018-09-14
Authors
Perras, Frédéric
Kobayashi, Takeshi
Pruski, Marek
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistry
Abstract

The polarization of nuclear spins by dynamic nuclear polarization (DNP) has redefined the sensitivity limits of solid‐state (SS) NMR spectroscopy. Materials science has been arguably one of the key beneficiaries of the recent remarkable advances of the technique, which included low‐temperature magic angle spinning (MAS), modern gyrotrons, and biradical agents for polarization transfer via the cross‐effect. In many classes of materials, DNP offers the capability of selectively sensitizing progressively smaller surface and interfacial regions of materials and eliciting responses from previously undetectable nuclei, with no detrimental effect on resolution. We review the most recent applications of DNP‐enhanced SSNMR to materials, focusing specifically on measurements that pose insurmountable challenges to conventional SSNMR, including the detection of 15N, 17O, 25Mg, 35Cl, 43Ca, 79Br, 89Y, 119Sn, and 195Pt by one‐dimensional MAS methods, ultrawideline NMR, as well as two‐dimensional homo‐ and heteronuclear correlation spectroscopy.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections