Publication Date

2-27-2019

Department

Ames Laboratory; Materials Science and Engineering

Campus Units

Materials Science and Engineering, Ames Laboratory

OSTI ID+

1502856

Report Number

IS-J 9914

DOI

10.1016/j.jmmm.2019.02.089

Journal Title

Journal of Magnetism and Magnetic Materials

Volume Number

481

First Page

234

Last Page

250

Abstract

To meet the growing need for energy efficiency in power electronics and electric machines, a number of new soft magnetic materials are being investigated. Among them, high silicon Fe-Si alloy has been recognized as a promising candidate for low-to-medium-frequency applications. Compared to the currently most widely used 3 wt% silicon steel, the steel containing 6.5 wt% Si possesses more favorable properties, including high electrical resistivity, good saturation magnetization, and near-zero magnetostriction. However, the high silicon content facilitates the formation of ordered phases, resulting in severe brittleness that prohibits mass production using the economical conventional processing methods. A number of new processing routes have been investigated and inspiring progress has been made. Prototypes of motors and transformers using high silicon steel have been demonstrated with improved efficiency and power density. If the processing cost and limitations of size and shape are properly addressed, high silicon steel is expected to be widely adopted by the industries. Among all the investigated processing techniques, rapid solidification appears to be the most cost-effective method for mass producing thin sheet of high silicon steel. This paper reviews the current state-of-the-art of the Fe-Si based soft magnetic materials including their history, structure, properties, processing, and applications.

DOE Contract Number(s)

AC02-07CH11358

Language

en

Department of Energy Subject Categories

36 MATERIALS SCIENCE

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Included in

Metallurgy Commons

Share

COinS