Publication Date
2-19-2019
Department
Materials Science and Engineering; Chemical and Biological Engineering; Physics and Astronomy; Ames Laboratory
Campus Units
Materials Science and Engineering, Ames Laboratory, Physics and Astronomy, Chemical and Biological Engineering
OSTI ID+
1495400
Report Number
IS-J 9868
DOI
10.1103/PhysRevLett.122.076401
Journal Title
Physical Review Letters
Volume Number
122
Issue Number
7
First Page
076401
Abstract
The cerium hexaboride (CeB6) f-electron compound displays a rich array of low-temperature magnetic phenomena, including a “magnetically hidden” order, identified as multipolar in origin via advanced x-ray scattering. From first-principles electronic-structure results, we find that the antiferroquadrupolar(AFQ) ordering in CeB6 arises from crystal-field splitting and yields a band structure in agreement with experiments. With interactions of p electrons between Ce and B6 being small, the electronic state of CeB6 is suitably described as Ce(4f1)3+(e−)(B6)2−. The AFQ state of orbital spins is caused by an exchange interaction induced through spin-orbit interaction, which also splits the J=5/2 state into a Γ8 ground state and a Γ7 excited state. Within the smallest antiferromagnetic (AFM) (111) configuration, an orbital-ordered AFQ state appears during charge self-consistency, and it supports the appearance of a “hidden” order. Hydrostatic pressure (either applied or chemically induced) stabilizes the AFM (AFQ) states over a ferromagnetic one, as observed at low temperatures.
DOE Contract Number(s)
AC02-07CH11358
Language
en
Department of Energy Subject Categories
36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Publisher
Iowa State University Digital Repository, Ames IA (United States)