Publication Date

10-13-2017

Department

Ames Laboratory; Materials Science & Engineering; Chemistry; Mathematics; Physics and Astronomy

Campus Units

Chemistry, Materials Science and Engineering, Mathematics, Physics and Astronomy, Ames Laboratory

DOI

10.1103/PhysRevMaterials.1.053403

Journal Title

Physical Review Materials

Volume Number

1

Issue Number

5

First Page

053403

Abstract

Theory and stochastic lattice-gas modeling is developed for the formation of intercalated metal islands in the gallery between the top layer and the underlying layer at the surface of layered materials. Our model for this process involves deposition of atoms, some fraction of which then enter the gallery through well-separated point-like defects in the top layer. Subsequently, these atoms diffuse within the subsurface gallery leading to nucleation and growth of intercalated islands nearby the defect point source. For the case of a single point defect, continuum diffusion equation analysis provides insight into the nucleation kinetics. However, complementary tailored lattice-gas modeling produces a more comprehensive and quantitative characterization. We analyze the large spread in nucleation times and positions relative to the defect for the first nucleated island. We also consider the formation of subsequent islands and the evolution of island growth shapes. The shapes reflect in part our natural adoption of a hexagonal close-packed island structure. Motivation and support for the model is provided by scanning tunneling microscopy observations of the formation of intercalated metal islands in highly-ordered pyrolytic graphite at higher temperatures.

DOE Contract Number(s)

AC02-07CH11358

Department of Energy Subject Categories

36 MATERIALS SCIENCE; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS