Publication Date

1-9-2019

Department

Ames Laboratory; Physics and Astronomy

Campus Units

Ames Laboratory, Physics and Astronomy

OSTI ID+

1492303

Report Number

IS-J 9853

DOI

10.1103/PhysRevB.99.045119

Journal Title

Physical Review B

Volume Number

99

Issue Number

4

First Page

045119

Abstract

The change of a material's electrical resistance (R) in response to an external magnetic field (B) provides subtle information for the characterization of its electronic properties and has found applications in sensor and storage related technologies. In good metals, Boltzmann's theory predicts a quadratic growth in magnetoresistance (MR) at low B and saturation at high fields. On the other hand, a number of nonmagnetic materials with weak electronic correlation and low carrier concentration for metallicity, such as inhomogeneous conductors, semimetals, narrow gap semiconductors and topological insulators, and two dimensional electron gas, show positive, nonsaturating linear magnetoresistance (LMR). However, observation of LMR in single crystals of a good metal is rare. Here we present low-temperature, angle-dependent magnetotransport in single crystals of the antiferromagnetic metal, TmB4. We observe large, positive, and anisotropic MR(B), which can be tuned from quadratic to linear by changing the direction of the applied field. In view of the fact that isotropic, single crystalline metals with large Fermi surface (FS) are not expected to exhibit LMR, we attribute our observations to the anisotropic FS topology of TmB4. Furthermore, the linear MR is found to be temperature independent, suggestive of quantum mechanical origin.

DOE Contract Number(s)

MOE2014-T2-2-112; NRFI2015-04; FG02-06ER46319; AC02-07CH11358

Language

en

Department of Energy Subject Categories

71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS