Publication Date

9-11-2017

Department

Chemistry; Ames Laboratory

Campus Units

Chemistry, Ames Laboratory

OSTI ID+

1707481

Report Number

is-j 9480

DOI

10.1039/C7TA02581E

Journal Title

Journal of Materials Chemistry A

Volume Number

5

Issue Number

38

First Page

20351

Last Page

20358

Abstract

Transition metal chalcogenide and pnictide nanocrystals are of interest for optoelectronic and catalytic applications. Here, we present a generalized route to the synthesis of these materials from the silylative deoxygenation of metal oxides with trimethylsilyl reagents. Specific nanophases produced in this way include Ni3S2, Ni5Se5, Ni2P, Co9S8, Co3Se4, CoP, Co2P, and heterobimetallic (Ni/Co)9S8. The resulting chalcogenide nanocrystals are hollow, likely due to differential rates of ion diffusion during the interfacial phase transformation reaction (Kirkendall-type effect). In contrast, the phosphide nanocrystals are solid, likely because they form at higher reaction temperatures. In all cases, simultaneous partial decomposition of the deoxygenating silyl reagent produces a coating of amorphous silica around the newly formed nanocrystals, which could impact their stability and recyclability.

DOE Contract Number(s)

AC02-07CH11358

Department of Energy Subject Categories

36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Available for download on Friday, November 09, 2018

Share

COinS