Giant enhancement of the magnetocaloric response in Ni–Co–Mn–Ti by rapid solidification

No Thumbnail Available
Date
2019-05-10
Authors
Bez, Henrique
Pathak, Arjun
Biswas, Anis
Zarkevich, Nikolai
Balema, Viktor
Mudryk, Yaroslav
Johnson, Duane
Pecharsky, Vitalij
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyMaterials Science and EngineeringChemical and Biological Engineering
Abstract

Magnetocaloric refrigeration is a solid-state cooling approach that promises high energy efficiency and low environmental impact. It remains uncompetitive with conventional vapor-compression technologies due to lack of high-performing materials that exhibit large magnetocaloric effects in low magnetic fields. Here we report a game-changing enhancement of the magnetocaloric response in a transition-metal-based Ni–Co–Mn–Ti. Mechanically and chemically stable rapidly solidified ribbons exhibit magnetic entropy changes as high as ∼" role="presentation" style="box-sizing: border-box; margin: 0px; padding: 0px; display: inline-block; line-height: normal; font-size: 16.2px; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">∼27 J⋅kg−1K−1 for a moderate field change of 2 T, comparable to or larger than the best known materials for near-room temperature applications. The ribbons can be easily manufactured in large quantities and the transition temperature can be adjusted by varying Co concentration.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections