Publication Date

4-3-2019

Department

Ames Laboratory; Materials Science and Engineering

Campus Units

Materials Science and Engineering, Ames Laboratory

OSTI ID+

1506101

Report Number

IS-J 9889

DOI

10.1103/PhysRevB.99.165103

Journal Title

Physical Review B

Volume Number

99

Issue Number

16

First Page

165103

Abstract

The equation of state (EOS) of materials at warm dense conditions poses significant challenges to both theory and experiment. We report a combined computational, modeling, and experimental investigation leveraging new theoretical and experimental capabilities to investigate warm-dense boron nitride (BN). The simulation methodologies include path integral Monte Carlo (PIMC), several density functional theory (DFT) molecular dynamics methods [plane-wave pseudopotential, Fermi operator expansion (FOE), and spectral quadrature (SQ)], activity expansion (actex), and all-electron Green's function Korringa-Kohn-Rostoker (mecca), and compute the pressure and internal energy of BN over a broad range of densities and temperatures. Our experiments were conducted at the Omega laser facility and the Hugoniot response of BN to unprecedented pressures (1200–2650 GPa). The EOSs computed using different methods cross validate one another in the warm-dense matter regime, and the experimental Hugoniot data are in good agreement with our theoretical predictions. By comparing the EOS results from different methods, we assess that the largest discrepancies between theoretical predictions are ≲4% in pressure and ≲3% in energy and occur at 106K, slightly below the peak compression that corresponds to the K-shell ionization regime. At these conditions, we find remarkable consistency between the EOS from DFT calculations performed on different platforms and using different exchange-correlation functionals and those from PIMC using free-particle nodes. This provides strong evidence for the accuracy of both PIMC and DFT in the high-pressure, high-temperature regime. Moreover, the recently developed SQ and FOE methods produce EOS data that have significantly smaller statistical error bars than PIMC, and so represent significant advances for efficient computation at high temperatures. The shock Hugoniot predicted by PIMC, actex, and mecca shows a maximum compression ratio of 4.55±0.05 for an initial density of 2.26g/cm3, higher than the Thomas-Fermi predictions by about 5%. In addition, we construct tabular EOS models that are consistent with the first-principles simulations and the experimental data. Our findings clarify the ionic and electronic structure of BN over a broad range of temperatures and densities and quantify their roles in the EOS and properties of this material. The tabular models may be utilized for future simulations of laser-driven experiments that include BN as a candidate ablator material.

DOE Contract Number(s)

AC52-07NA27344; ACI 1640776; 00013725; SC0016248; AC02-07CH11358

Language

en

Department of Energy Subject Categories

36 MATERIALS SCIENCE; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; 75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Share

COinS