Publication Date

12-2017

Department

Ames Laboratory

Campus Units

Ames Laboratory

Report Number

IS-J 9492

DOI

10.1007/s10854-017-7689-5

Journal Title

Journal of Materials Science: Materials in Electronics

Volume Number

28

Issue Number

23

First Page

17533

Last Page

17540

Abstract

The arrangement of the electrode materials is a significant contributor for constructing high performance supercapacitor. Here, vertically-aligned Mn(OH)2 nanosheet thin films were synthesized by cathodic electrodeposition technique on flexible Au coated polyethylene terephthalate substrates. Morphologies, microstructures, chemical compositions and valence state of the nanosheet films were characterized systematically. It shows that the nanosheets arranged vertically to the substrate, forming a porous nanowall structures and creating large open framework, which greatly facilitate the adsorption or diffusion of electrolyte ions for faradaic redox reaction. Electrochemical tests of the films show the specific capacitance as high as 240.2 F g−1 at 1.0 A g−1. The films were employed to assemble symmetric all-solid-state supercapacitors with LiCl/PVA gel severed as solid electrolyte. The solid devices exhibit high volumetric capacitance of 39.3 mF cm−3 at the current density 0.3 mA cm−3 with robust cycling stability. The superior performance is attributed to the vertically-aligned configuration.

Language

en

Department of Energy Subject Categories

36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Publisher

Iowa State University Digital Repository, Ames IA (United States)

Available for download on Saturday, December 01, 2018

Share

COinS