Lead‐Free Semiconductors: Soft Chemistry, Dimensionality Control, and Manganese‐Doping of Germanium Halide Perovskites

No Thumbnail Available
Date
2018-12-07
Authors
Men, Long
Rosales, Bryan
Gentry, Noreen
Cady, Sarah
Vela, Javier
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Research Projects
Organizational Units
Organizational Unit
Ames National Laboratory

Ames National Laboratory is a government-owned, contractor-operated national laboratory of the U.S. Department of Energy (DOE), operated by and located on the campus of Iowa State University in Ames, Iowa.

For more than 70 years, the Ames National Laboratory has successfully partnered with Iowa State University, and is unique among the 17 DOE laboratories in that it is physically located on the campus of a major research university. Many of the scientists and administrators at the Laboratory also hold faculty positions at the University and the Laboratory has access to both undergraduate and graduate student talent.

Organizational Unit
Chemistry

The Department of Chemistry seeks to provide students with a foundation in the fundamentals and application of chemical theories and processes of the lab. Thus prepared they me pursue careers as teachers, industry supervisors, or research chemists in a variety of domains (governmental, academic, etc).

History
The Department of Chemistry was founded in 1880.

Dates of Existence
1880-present

Related Units

Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryChemistryChemical Instrumentation Facility
Abstract

Lead halide perovskites have drawn enormous interest due to their exceptional photovoltaic and optoelectronic properties. However, the heavy metal lead is harmful to humans and the environment resulting in a need for strategies to replace this toxic element. Herein, we report a facile aqueous synthesis of CsGeX3 (X=I, Br) perovskite nanocrystals with size control achieved by varying the concentration of a cysteammonium halide ligand. We observe a variety of morphologies including pyramidal, hexagonal, and spheroidal. CsGeX3 nanocrystals undergo a lattice expansion due to partial replacement of Cs+ with larger cysteNH3+ cations into their lattice. We successfully dope Mn2+into the CsGeX3 lattice for the first time with incorporation of up to 29% in bulk and 16% in nano samples. XRD peak shifts and EPR hyperfine splitting strongly indicate that Mn2+ is doped into the lattice. Our results introduce a new member to the lead‐free halide perovskite family and set the fundamental stage for their use in optoelectronic devices.

Comments
Description
Keywords
Citation
DOI
Copyright
Collections