Tuning phase-stability and short-range order through AI-doping in (CoCrFeMn)100-xAIx high entropy alloys

Thumbnail Image
Date
2019-07-08
Authors
Marshal, Amalraj
Smirnov, A. V.
Sharma, Aayush
Balasubramanian, Ganesh
Pradeep, K. G.
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Johnson, Duane
Distinguished Professor
Person
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Materials Science and Engineering
Materials engineers create new materials and improve existing materials. Everything is limited by the materials that are used to produce it. Materials engineers understand the relationship between the properties of a material and its internal structure — from the macro level down to the atomic level. The better the materials, the better the end result — it’s as simple as that.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyMaterials Science and EngineeringChemical and Biological Engineering
Abstract

For (CoCrFeMn)100−xAlx high-entropy alloys, we investigate the phase evolution with increasing Al content (0≤x≤20 at.%). From first-principles theory, aluminum doping drives the alloy structurally from fcc to bcc separated by a narrow two-phase region (fcc+bcc), which is well supported by our experiments. Using KKR-CPA electronic-structure calculations, we highlight the effect of Al doping on the formation enthalpy (alloy stability) and electronic dispersion of (CoCrFeMn)100−xAlx alloys. As chemical short-range order indicates the nascent local order, and entropy changes, as well as expected low-temperature ordering behavior, we use KKR-CPA-based thermodynamic linear response to predict the chemical ordering behavior of arbitrary complex solid-solution alloys—an ideal approach for predictive design of high-entropy alloys. The predictions agree with our present experimental findings and other reported ones.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections