An inverse Ruddlesden-Popper nitride Ca7(Li1−xFex)Te2N2 grown from Ca flux

Thumbnail Image
Date
2018-07-25
Authors
Lin, Qisheng
McVey, Patrick
Houk, Robert
Bud’ko, Sergey
Canfield, Paul
Major Professor
Advisor
Committee Member
Journal Title
Journal ISSN
Volume Title
Publisher
Authors
Person
Houk, Robert
Professor Emeritus
Person
Lin, Qisheng
Assistant Scientist
Person
Canfield, Paul
Distinguished Professor
Research Projects
Organizational Units
Organizational Unit
Organizational Unit
Physics and Astronomy
Physics and astronomy are basic natural sciences which attempt to describe and provide an understanding of both our world and our universe. Physics serves as the underpinning of many different disciplines including the other natural sciences and technological areas.
Organizational Unit
Journal Issue
Is Version Of
Versions
Series
Department
Ames National LaboratoryPhysics and AstronomyChemistry
Abstract

Nitridoferrates containing monovalent iron ions are a class of materials of recent interest as potentially novel magnetic materials. Aiming at the exploration of nitridoferrates of calcium, we report the single crystal growth from Ca flux and crystal structure of the first member (n = 2) of a series of inverse Ruddlesden-Popper nitrides with a general formula of An−1A'2BnX3n+1, where A = Li/Fe, A' = Te, B = N, and X = Ca. Single crystal X-ray diffraction analyses indicate the crystal with a composition of Ca7(Li0.32(1)Fe0.68(1))Te2N2 and the tetragonal space group I4/mmm (a = 4.7884(1) Å, c = 25.3723(4) Å, Z = 2). The structure features alternately stacking NaCl-type A'X slabs and the perovskite-type ABX3 slabs along the c axis. The Li/Fe atoms are located in cuboctahedral cavities surrounded by eight Ca6N octahedra in the ABX3 slab. This work demonstrates the viability of the Ca-rich flux as a suitable solvent for the exploration of new complex nitrides with interesting crystal structure and properties.

Comments
Description
Keywords
Citation
DOI
Subject Categories
Copyright
Collections